Loss of Notch1 Disrupts the Barrier Repair in the Corneal Epithelium
نویسندگان
چکیده
The corneal epithelium is the outermost layer of the cornea that directly faces the outside environment, hence it plays a critical barrier function. Previously, conditional loss of Notch1 on the ocular surface was found to cause inflammation and keratinization of the corneal epithelium. This was in part attributed to impaired vitamin A metabolism, loss of the meibomian glands and recurrent eyelid trauma. We hypothesized that Notch1 plays an essential role in the corneal epithelial barrier function and is a contributing factor in the pathologic changes in these mice. Notch1 was conditionally deleted in adult Notch1(flox/flox), K14-Cre-ERT(+/-) mice using hydroxy-tamoxifen. The results indicated that conditional deletion of Notch1 on the ocular surface leads to progressive impairment of the epithelial barrier function before the onset of corneal opacification and keratinization. Loss of the barrier was demonstrated both by an increase in in vivo corneal fluorescein staining and by enhanced penetration of a small molecule through the epithelium. Corneal epithelial wounding resulted in significant delay in recovery of the barrier function in conditional Notch1(-/-) mice compared to wild type. Mice with conditional deletion of Notch1 did not demonstrate any evidence of dry eyes based on aqueous tear production and had normal conjunctival goblet cells. In a calcium switch experiment in vitro, Notch1(-/-) cells demonstrated delayed membrane localization of the tight junction protein ZO-1 consistent with a defect in the epithelial tight junction formation. These findings highlight the role of Notch1 in epithelial differentiation and suggest that intrinsic defects in the corneal epithelial barrier recovery after wounding is an important contributing factor to the development of inflammatory keratinization in Notch1(-/-) mice.
منابع مشابه
A role for notch signaling in human corneal epithelial cell differentiation and proliferation.
PURPOSE To identify the role of Notch signaling in the human corneal epithelium. METHODS Localization of Notch1, Notch2, Delta1, and Jagged1 in the human corneal epithelium was observed with the use of indirect immunofluorescence microscopy. Gene and protein expression of Notch receptors and ligands in human corneal epithelial cells was determined by RT-PCR and Western blot analysis, respecti...
متن کاملDown-regulation of Notch signaling during corneal epithelial proliferation
PURPOSE We evaluated the expression and activation of Notch pathway genes in the adult human and murine corneal epithelium during proliferation. METHODS The expression of Notch pathway genes in the limbal and central human corneal epithelium was compared by reverse transcription polymerase chain reaction (RT-PCR). Their expression pattern was examined by immunofluorescence and in situ hybridi...
متن کاملLocalization and Expression of Zonula Occludins-1 in the Rabbit Corneal Epithelium following Exposure to Benzalkonium Chloride
Preservatives are a major component of the ophthalmic preparations in multi-dose bottles. The purpose of this study was to investigate the acute effect of benzalkonium chloride (BAC), a common preservative used in ophthalmic preparations, on the localization and expression of zonula occludens (ZO)-1 in the rabbit corneal epithelium in vivo. BAC at 0.005%, 0.01%, or 0.02% was topically applied t...
متن کاملNotch inhibition during corneal epithelial wound healing promotes migration.
PURPOSE To determine the role of Notch signaling in corneal epithelial migration and wound healing. METHODS Immunolocalization of Notch1 was performed during epithelial wound healing in vivo in mouse corneal epithelial debridement wounds and in vitro in primary human corneal epithelial cells following a linear scratch wound. The effects of Notch inhibition, using the γ-secretase inhibitor N-(...
متن کاملBasonuclin-Null Mutation Impairs Homeostasis and Wound Repair in Mouse Corneal Epithelium
At least two cellular processes are required for corneal epithelium homeostasis and wound repair: cell proliferation and cell-cell adhesion. These processes are delicately balanced to ensure the maintenance of normal epithelial function. During wound healing, these processes must be reprogrammed in coordination to achieve a rapid re-epithelialization. Basonuclin (Bnc1) is a cell-type-specific t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013